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THE ROLE OF INSTABILITY WAVES IN PREDICTING JET NOISE 
 

M.E. Goldstein* and L.M. Handler� 
National Aeronautics and Space Administration 

Glenn Research Center 
Cleveland, Ohio 44135 

 

Abstract* 

Debate over whether linear instability waves play a role 
in the prediction of jet noise has been going on for 
many years. Parallel mean flow models, such as the one 
proposed by Lilley,2 usually neglect these waves 
because they cause the solution to become infinite. The 
present paper solves the true non-parallel acoustic 
equations for a two-dimensional shear layer by using a 
vector Greens function and assuming small mean flow 
spread rate. The results show that linear instability 
waves must be accounted for in order to construct a 
proper causal solution to the problem. 

Introduction 

Current industrial noise prediction methods, such as the 
MGB approach,1 are based on Lilley�s2 equation which  
involves a wave operator appropriate to sound 
propagation on a parallel mean flow. This equation 
possesses homogeneous solutions corresponding to 
spatially growing instability waves on that flow and its 
complete solution consists of a particular solution plus 
these homogeneous contributions. But the result is 
meaningless because the instability waves become 
unbounded (infinite) far downstream in the flow. The 
usual resolution to this dilemma is to completely 
neglect the contribution of the instability waves. 
Dowling, et al.3 attempted to justify this by invoking 
causality arguments. 

A better approach is to begin with an equation 
appropriate to sound propagation on a non-parallel 
flow, say the actual mean flow in the jet. The most 
important difference between this approach and Lilley�s 
parallel flow result is that the homogeneous solutions to 
the acoustic equations correspond to instability waves 
that grow and then decay on the diverging non-parallel 
base flow and therefore always remain bounded, which 
eliminates the dilemma alluded to above. 

A vector Greens function approach is used in reference 
4 to obtain a general solution to the non-parallel 
acoustic equations by assuming that the spread rate of 
the mean flow is small. The relevant Green�s function, 
which must satisfy an appropriate causality condition, 
consists of two components�both of which act on the 
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same source term. The first corresponds to the usual 
Lilley equation solution but with slightly modified 
source terms. The second is associated with linear 
instability waves but is very different from 
conventional instability models since these waves are 
now continuously generated along the  length of the jet 
and do not constitute separate sound sources. They 
merely serve as conduits to carry the sound to the far 
field.  

The Greens Function can be thought of as a filter that 
only allows certain parts of the source to radiate. Each 
of its two components responds to different portions of 
the source spectrum causing the radiation field to 
exhibit a bi-model structure. The contribution of the 
second Greens function component is fairly small at 
subsonic Mach numbers but can be significant at 
supersonic speeds. The result is therefore somewhat 
different from the conventional parallel flow models. 

The present paper applies the general result of reference 
4 to a two-dimensional shear layer with fully developed 
similarity form, which greatly simplifies the final 
equations. 

The Fundamental Equations 

We let 

 21

2oh h v≡ +  (1) 

denote the stagnation enthalpy, h the enthalpy,  
t the time, x ≡ {x1,x2,x3} the Cartesian coordinates,  
p the pressure, ρ the density, v = {v1,v2,v3} the fluid 
velocity, σij the viscous stress tensor, and qi the heat 
flux vector. The flow variables are assumed to satisfy 
the ideal gas law 

 p = ρRT,    h = cpT (2) 

with R = cp − cv being the gas constant, cp and cv the 
specific heats at constant pressure and volume and T the 
absolute temperature. 

References 5 and 19 show that the Navier-Stokes 
equations can be recast into the convective form of the 
linearized Navier-Stokes equations by dividing the 
dependent variables 

 , , , i i ip p p h h h v v vρ ρ ρ ′ ′ ′ ′= + = + = + = +! !  

  (3) 
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as well as the viscous terms σij and qi, into their �base 
flow� components , , , , ,  and i ij ip h v qρ σ! !  and into their 
�residual� components ρ′, p′, h′, , ,  and i ij iv qσ′ ′ ′  and 
requiring that the former satisfy the inhomogeneous 
Navier-Stokes equations 

  0oD

Dt
ρ =  (4a) 

 ( ) o
i ij ij

i j

D p
v T

Dt x x

∂ ∂
+ = +

∂ ∂
!!ρ σ  (4b) 

 ( )o o o
o j j i ij

j

D D Hp
h H q v

Dt t Dt x

∂ ∂
− = + − +

∂ ∂

!! ! ! !ρ σ  (4c) 

along with an ideal gas law equation of state, 

 
p

p

c p
h c T

R ρ
= =! !  (5) 

where the operator Do/Dt is not the usual convective 
derivative but is defined by 

 ( ) o
j

j

D f
f v f

Dt t x

∂ ∂
≡ +

∂ ∂
!  (6) 

for any function f, 

 21

2oh h v≡ +! ! !  (7) 

is the base flow stagnation enthalpy, and the �sources 
strengths� , ,ij oT H! !  and jH! , which are assumed to be 
localized, can be arbitrarily specified. 

The residual variables are governed by the convective 
form of the linearized Navier-Stokes (LNS) equations 

 Lµvuv = sµ,     µ, v = 1, 2, � 5 (8) 

where the linear operator Lµv, which is exactly the same 
as the operator that would be obtained by linearizing 
the Euler equations about the base flow (4), is written 
out in full in reference 5. The Greek indices range from 
1 to 5, the Latin indices from 1 to 3, the Einstein 
summation convention is being used, the five-
dimensional dependent variable vector uv is given by 

 { } , ,
1

op
u v

′ 
′ ′≡  

− 
ν νρ ρ

γ
 (9) 

and the source term sµ is given by 

( ) ( )4 for =1,...4i
j j ij ij

j j

v
s e e e e

x xµ µ µ µδ µ
∂∂ ′ ′≡ − + −

∂ ∂

!
! !  

  (10) 

 

where 

 ( )21
1

2o op p v H
γ

ρ γ
−′ ′ ′≡ + + − !  (11) 

The source strengths iv ive e′ − !  are given by 

2
4

1
,

2ij i j ij ij i i o i ij je v v v e v h q v
γ

ρ δ ρ σ ρ σ
−′ ′ ′ ′ ′ ′ ′ ′ ′ ′≡ − + + ≡ − − +

  (12) 

 ( ) 41 ,ij ij ij o i i ij je T H e H T vδ γ≡ − − ≡ −! ! ! !! ! !  (13) 

where 

 21

2oh h v′ ′ ′= +  (14) 

Equations (8) are exact consequences of the original 
Navier-Stokes equations, but they have been rearranged 
so that their left-hand sides are the same as the 
equations that would have been obtained by linearizing 
the convective form of the Euler equations about the 
base flow (4). In other words, they are just the LNS 
equations with modified dependent variables and with 
the viscous stress perturbation replaced by the 
generalized Reynolds stress ij ije e′ − ! and the heat flux 
perturbation replaced by the generalized stagnation 
enthalpy flux 4 4i ie e′ − ! .In the acoustic analogy approach 
the right hand sides would be treated as known source 
terms and the linearized Euler operators Lµν  would be  
inverted to solve for the dependent variables. The fact 
that they are non-linear causes no particular difficulty 
since one of them, op′ , reduces to the linear pressure 
fluctuation in the far field. 

The base flow equations (4) reduce to the usual Euler 

equations when the arbitrary source strengths , ,ij jT H! !  

and oH!  and viscous terms ijσ  and iq  are set equal to 

zero. A general class of solutions to these equations, 
which conveniently provide good approximations to the 
actual mean flow fields in jets and shear layers, is the 
unidirectional transversely sheared mean flows 

 ( ) ( )1 2 3 2 3, , constant, ,i iv U x x p x xδ ρ ρ= = =! (15) 

The fifth equation (8) then decouples from the 
remaining four which become the inhomogeneous 
compressible Rayleigh equations6 

 1
o i o

i j ij
j i j

D u pU
u e

Dt x x x
ρ δ

 ′ ′∂∂ ∂′ ′ + + =
 ∂ ∂ ∂ 

 (16a) 

 ( ) 4
11

j jo o
j

j j j

u eD p U
p e

Dt x x x
γ γ

′ ′ ∂ ∂′ ∂′ + = − +
 ∂ ∂ ∂ 

 (16b) 
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where /i iu u ρ′ ≡  and Do/Dt now reduces to the usual 

convective derivative 

 
1

oD
U

Dt t x

∂ ∂
= +

∂ ∂
 (17) 

It is well known (see chapter 1 of ref. 7) that the 
velocity-like variables iu ′  can be eliminated between 

these equations (by taking the divergence of the first 
equation and the convective derivative of the second, 
subtracting the results and then using the first equation 
to eliminate the velocity fluctuation on the left-hand 
side) to obtain the Lilley2 equation 

 oL p s′ ≡  (18) 

where 

 
2

2 2
2

1
2o

i i j j

D D U
L c c

Dt x x x x xDt

 ∂ ∂ ∂ ∂ ∂
≡ − −  ∂ ∂ ∂ ∂ ∂ 

! !  (19) 

is the variable density Pridmore-Brown8 operator, 

 ( )2 2 3,/c p x xγ ρ=!  (20) 

is the square of the mean flow sound speed and the 
source term s is written out in reference 5. As noted in 
the Introduction, it possesses homogeneous solutions 
corresponding to spatially growing instability waves on 
the base flow (15). The complete solution to these 
equations consists of a particular solution plus 
contributions from these homogeneous solutions, but 
the result is meaningless because the instability waves 
become unbounded far downstream in the flow causing 
the solution to become infinite there. The usual 
resolution is to completely neglect the instability wave 
contribution.  

A better resolution is to choose the base flow to be the 
actual mean flow of the jet. The over bars in the base 
flow equations then denotes the time average 

 ( )1
lim    , d

2

T

T
T

t t
T→∞

−

• ≡ •∫ x  (21) 

where the dot is a place holder for ρ, vi, p, and h, and 

 ( )/ρ ρ• ≡ •!  (22) 

denotes a Favre averaged quantity8 for all variables 

except oh! , which is defined by Eq. (7). Notice that  

Eq. (20) is completely consistent with the overall ideal 
gas law (2) when the tilde is defined in this fashion. 

The time derivatives drop out of the base flow 
equations and their source strengths are given by 

 ~
ij i jT v vρ ′ ′= −!  (23) 

 
1

2o iiH T=! !  (24) 

 4
~

i i ij j o ie H T h′ ′≡ − = −! ! !! ν ρ ν  (25) 

They are now the ordinary RANS equations, which do 
not, of course, form a closed system. They are usually 
closed by assuming some sort of model relating the 
source terms to the mean flow variables , , ,iv pρ!  and 
h!  and their derivatives, such as Boussinesq model8,9 
for the Reynolds stresses and a similar model for jH! . 

The most important difference between these results 
and the parallel flow result is that the homogeneous 
solutions to the LNS equations, which now correspond 
to instability waves growing and then decaying on the 
diverging non-parallel base flow, will always remain 
bounded. This eliminates the paradox alluded to above 
and the corresponding LNS equations can be used to 
calculate the radiated sound. The relevant solution 
consists of a particular solution that is driven by the 
sources (i.e. it satisfies causality and therefore the 
appropriate upstream boundary conditions) and a 
homogeneous solution that is driven by the upstream 
boundary conditions, say at the nozzle exit.  

The Green�s Function Solution 

 The particular solution that satisfies the appropriate 
outgoing wave boundary conditions can be written in 
terms of the causal vector Greens function for these 
equations ( ), ,vg t tσ ′ ′x x , which satisfies11 

 ( ) ( )  = L g t tµν νσ µσδ δ δ′ ′− −x x  (26) 

and leads to the following formula for uv 

( ) ( ) ( ),   , , ,

V

u t g t t s t d dtν νµ µ
∞

−∞

′ ′ ′ ′ ′ ′= ∫ ∫x x x x x  

  (27) 

where the symbol V denotes integration over all space. 

The derivatives can be transferred to the Greens 
function (see reference 4) to obtain 

 ( ) ( )0 , , , ,j j
V

p t t t d dt
∞

−∞

′ ′ ′ ′ ′ ′ ′= ∫ ∫ µ µγ τx x x x   (28) 

where 
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( ) 4 44

2
4

44

1  

( 1)

2

j
j j

l
j

l

v
g g

x x

vg
g

x x

 ∂∂
 ≡ − − − ′ ′∂ ∂ 

 ∂∂−
+ − ′ ′∂ ∂ 

"

"

!

!

µ
µ µ

µ

γ γ

γ δ

  

  (29) 

accounts for the propagation effects and 

 ~
j j j jv v v vµ µ µ µτ ρ ρ σ

 
 ′ ′ ′ ′ ′≡ − − +
 
 

 (30) 

with 

 4 ov h′ ′≡  (31) 

and 

 4 j j jq vσ σ′ ′ ′= − + " "  (32) 

when the bulk viscosity is zero. τνj, which accounts for 
the source structure, is just the generalized  
four-dimensional fluctuating Reynolds stress in the 
inviscid limit which is of primary interest here. 
Equation (28) therefore provides a direct linear relation 
between this quantity and the far field pressure 
fluctuations. 

Small Spread Rate Approximation 

Our interest here is in the two-dimensional shear layer 
with zero velocity in the upper stream. But the general 
solution to Eq. (26) is very complicated even for this 
simple case. However, high Reynolds number turbulent 
shear layers are nearly parallel and it is therefore 
appropriate to seek an asymptotic solution4,5 by 
expanding in the shear layer spread rate ε. Since the 
mean Reynolds stresses will certainly dominate over 
the viscous stresses in this case, we assume that 

0ij ijqσ = = . 

Then the mean cross flow velocity 3v!  and the Reynolds 
stresses 3Tµ

!  and 3T µ
!  will vanish and the remaining 

mean flow variables will expand like 

 ( ) ( ) ( )1
1 2 2, ,v U X x U X xε= + +! …  (33) 

 ( ) ( ) ( )12
2 2 2, ,v V X x V X x= + +! …ε ε  (34) 

 ( ) ( ) ( )1
2 2, ,p P X x P X xε= + +…  (35) 

 ( ) ( ) ( )1
2 2, ,R X x R X xρ ε= + +…  (36) 

and 

 ( ) ( ) ( )0 1 22
j j j jT T T Tµ µ µ µε ε= + + +! …  (37) 

with similar expansions for , ,jh H! !  and oH! . Here  

X ≡ εx1 denotes the slow streamwise variable. 
Substituting these into the mean flow equations and 
assuming that all Reynolds stresses vanish in the free 

streams shows that (0) (0) (0)
12 21 24 0T T T= = = , (0)

22P T= , 

(1)(1)
22P T=  and that the lowest order mean flow 

equations reduce to the usual two-dimensional 
compressible turbulent boundary layer equations. 

These results imply that the linear Euler operator Lµv 
will expand like 

 ( ) ( )0 1
v v vL L Lµ µ µε= + +…   (38) 

and therefore that the vector Greens function gvσ  has an 
expansion of the form  

 ( ) ( )0 1
v v vg g gσ σ σε= + +…  (39) 

where (0)
vg σ  and (1)

vg σ  are determined by 

 ( ) ( ) ( ) ( )0 0
v vL g t tµ σ µσδ δ δ′ ′= − −x x  (40) 

and 

 ( ) ( ) ( ) ( )0 1 1 0
v v v vL g L gµ σ µ σ= −  (41) 

The operators (0)
vLµ  and (1)

vLµ  are written out in detail in 

reference 4. The important thing is that the left hand 
sides of the first 4 components of these equations are 
formally the same as the left sides of the Rayleigh 
equations (16) and since their coefficients are 
independent of x3 and t and depend on x1 only through 
the slow streamwise variable X, a local (causal) solution 
can be constructed by taking Fourier-Laplace 
transforms to obtain 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )1 1 1 3 3 3

2
0 2

4 2
1 2

2 2

1  

    

~ic
o

ic

i k x x k x x t t
o

c x
g

k U x

D e G x x d d

+∞ ∞

−∞ −∞

′ ′ ′ − + − − − 

′
− = −

′ − 

′ ′

∫ ∫ ∫σ

ω
σ

γ
ω

ω k

 

  (42) 
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where 

 { }1 3,k k=k  (43) 

is the wave number vector in the plane of the shear 
layer 

 1, 2,3
j

D for j
x

∂′ ≡ = =
′∂σ σ  (44) 

 
( )

( )
( )22

12

-1
  for =4~

o

D i U x
xc x

−  ∂′ ′≡ + ′∂′  
σ

γ
ω σ  (45) 

and the one-dimensional self adjoint Greens function 

( )2 2oG x x′  satisfies 

 
( )
( )1

2 2
3

2
k o

x x
L G

δ

π

′−
=  (46) 

where 

 
( ) ( )1

2 2 2

2 2
2 21 1

  1
~ ~

o o
k

c k c
L

x xk U k U

∂ ∂
≡ + −

∂ ∂− −ω ω
 (47) 

with k2 = k2 is the one-dimensional reduced 
Rayleigh�s operator.  

oG  is therefore given by 

 
( ) ( )

( )
2 2

2 23
 for 

2
o

w x w x
G x x+ − ′

′= >
∆ π

 (48) 

where 

 
1

0kL w± =  (49) 

 2
2   xw e xλ±±

± → ±∞∼  (50) 

( )22 2 2 2 2
1,   k c k k U c+ + − − −= − = − −λ ω λ ω  

   (51) 

c+, c�, and U� are defined in the obvious ways and 

 ( ) ( ) ( )
22

2 2 1 2
~
oW x c x k U x ∆ ≡ − ω  (52) 

where W is the Wronskian of ω+ and ω� is a constant 
independent of x2. The result for x2 < 2x′  will not be 

needed. 

Steady state solutions can only exist if the Laplace 
inversion contour (shown in fig. 1) can be continuously 
deformed onto the real axis. But  (0)G  possess (usually 
simple) poles in the upper half k1-plane that cross the 
real k1-axis during this deformation (since the shear 

layer is inviscidly unstable). The k1-integration contour 

1kc  must therefore be deformed to lie below these poles 
(as shown in fig. 2) in order to obtain a continuous 
result .12,13 The poles correspond to the eigenvalues, say 
k1 = 3( ,k , X) κ ω of the Rayleigh operator (47). The 
integral over 

1kc  can then be decomposed into an 
integral over the real k1-axis plus a contour integral that 
can be evaluated as the residue of the pole that crossed 
the real axis. The causal Greens function (43) can 
therefore be written as 

( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )( ) ( ) ( ) ( )

1 1 1 3 3 3

3 1 1 3 3 3

2
0 2

4 2
1 2

2 2

2
2 2

2
2 3

,
2

1    

2  
,

~

~

o

i k x x k x x t t
o

o o

i k x x k x x t t
o 3

c x
g

k U x

D e G x x d d

c x w x
i

U x k

D e w x d dk

∞

−∞

′ ′ ′ − + − − − 

∞
+

−∞

′ ′ ′ − + − − − 
−

′
− = −

′ − 

′ ′

′
−

′ ′ − ∆ 

′ ′

∫ ∫ ∫

∫ ∫ ∫

σ

ω
σ

κ ω ω
σ

γ
ω

ω

π
κ ω ω

ω

k
 

  (53) 

 
 

Above all singularities
in ω-plane

c

�eω

Inversion contour
�mω

Figure 1.—Inversion contour for Laplace transform.
 

 
 

c       0

�mk1

Figure 2.—Deformed k1-plane contour.

�ek1

κ (ω,k3,X)
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where w 0±, which are now linearly dependent, are the 
limits of w±  as  k1 → κ  and 

 
1 1
lim

k

d

dk→

∆′∆ ≡
κ

 (54) 

The first term in this result, which corresponds to the 
usual Lilley�s equation solutions that appear in the 
literature, remains bounded and is a uniformly valid 
approximation to the analogous term in the true non-
parallel flow result. But the second terms grows without 
bound as 1 1x x′−  becomes large (since Im κ < 0) and 

therefore becomes invalid on the long streamwise 
length scale X � X′. It can, however, be rendered 
uniformly valid within the shear layer by using the 
method of multiple scales, which amounts to replacing 

    
( )3 1 1( , )i k x x

e
′ − κ ω

 

by 

( )3
1

, ,

( )

X

X

i k X dX

A X X e ′

 
 
  ′

∫ κ ω
ε

 

where the slowly varying amplitude function A, which 
satisfies the initial condition 

 A (XX′) → 1 as X → X′ (55) 

is determined by imposing a solvability condition on 
the next order solution. The detailed results are given in 
reference 4. 

But, this solution is still not uniformly valid at large 
transverse distances where 2 (1)Y x O≡ =ε , because the 

second order solution14 (which is a generalization of the 
second order instability wave solution considered by 
Tam and Morris) now decays more slowly with  
x2 as x2 → ± ∞ than the first order solution. But an 
�outer� solution can be constructed by using the WKBJ 
method to solve the reduced stationary (or uniformly 
moving) media wave equation that governs the flow in 
that region This result can be used to form a  
�composite� solution17 that remains uniformly valid 
everywhere within and outside the shear layer. The 
details are given in reference 4. Our interest here is in 
the upper region and we therefore do not require 
uniformity below the shear layer. 

 The final uniformly valid Greens function g4σ can be 
written as 

 ( ) ( ) ( ) ( ) ( )0 0
4 41 ;i t tg e G dω
σ σγ ω ω

∞
′− −

−∞

′− = ∫ x x  (56) 

where 

( ) ( )
( )

( ) ( ) ( )

( )
( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( )

1 1 1 3 3 3

3 3 3

2
0 2

4 2
1 2

2 2

2
2 2

2 2
2 3

1
,

2 3

   

 

2 , 1

 

~

~

o

i k x x k x x
o

o o o

o

i X Y k x x

o

c x
G

k U x

D e G x x d

c x A X X w xi

U x k X Y

D e w x dk

∞

−∞

′ ′ − + − 

∞
+

−∞

 ′Θ + −  
−

′
= −

′ − 

′ ′

′ ′
−

′ ′ ′ − ∆ + 

′ ′

∫ ∫

∫

σ

σ

ε
σ

ω

π κ ω ω α

k
  

  (57) 

   

 ( ) ( )22 2
3i X k c Y+Θ ≡ Θ − + −κ ω  (58) 

 
( )

0

2
2
3

22 2
0 3

( )
( )

  

X

X

i k Yc
Z dZ

X k c

+

′ +

   −  
   Θ = −

+ −
∫

ω

κ
κ ω

 (59) 

 0( )oX X X Y≡ −α  (60) 

 
2 2 2

3 ( )i k c+

≡
+ −

κ
α

ωκ
 (61) 

with the arguments k3 and ω suppressed. The functions 

oG and ∆′ are defined by Eqs. (48), (52), and (54). 

It is necessary to evaluate Eq. (57) in the region where 

 2 2 2R rε= → ∞  (62) 

with 

 2 2 2 2
1 2 3r x x x≡ + +  (63) 

in order to in calculate the radiated sound at large 
distances from the shear layer. But applying the method 
of stationary phase and using Eqs. (48), (50), (51) along 
the asymptotic behavior of Θ and a shows that 

( )

( )
( ) ( )

/
0

4 2
 sin cos

2

� �                                        

i r c

B I

e
G

cr

G G

+

+
→ −

 ′ ′+ 

ω

σ

σ σ

ω θ ϕ
π

x x x x

 

  (64) 
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when the azimuthal polar angle θ and the Mach number 

M are sufficiently large. The ( )�BG σ ′x x and 

( )�IG σ ′x x  are defined in reference 4,  ϕ is the  

circumferential polar angle and ( )� � ,θ ϕ=x x  denotes 

the unit vector in the x-direction. 

The Far Field Acoustic Spectrum 

The quantity of interest is the mean square acoustic 
pressure   

 ( ) ( )2 1
, ,

2

T

o o o

T

p p t p t t dt
T

−

′ ′≡ +∫ x x  (65) 

at large distances above the shear layer, where we  
have used the fact that op p′ ′→  in this region (see  

Eqs. (11), (23), and (24)) and T denotes a large but 
finite time interval. Substituting Eq. (28) into this result 
and changing integration variables shows that 

( ) ( )

( )

2 ,  ; ,

                                              ; ,

o j o

V

j

p t t

d d d

∞

−∞

′= +

′ ′

∫ ∫ ∫ "

"

σµ

σ µ

γ τ

τ τ τ

x x x

x x

ζζζζ

ζ ζζ ζζ ζζ ζ

 

  (66) 

where 

( ) ( )1 1 1, ,j j ot t t dtσ µ σ µγ γ τ γ
∞

−∞

′ ′≡ + + +∫" "x x x x ζζζζ  

  (67) 

accounts for the acoustic propagation and mean flow 
interaction effects and 

 ( ) ( )1
, ,

2

T

i j i j

T

t t dt
Tσ µ σ µτ τ τ τ

−

′ ′ ′ ′ ′≡ + +∫ x x ζζζζ  (68) 

is the density weighted fourth order 2-point time 
delayed turbulent velocity/total enthalpy correlation.  

Equation (66) provides a direct linear relation between 
the acoustic pressure and the fourth order correlations 
of the turbulent fluctuations in the shear layer. 
Unfortunately, the latter quantity is very difficult to 
determine�either experimentally or numerically�and 
it is, therefore, highly desirable to make the acoustic 
predictions as insensitive to its details as possible. It 
would be possible to make considerable progress 
toward achieving that objective if the propagation 
factor, jσµγ " ,were to vary only slowly over the 
correlation length of j "σ µτ , because the former could 
then be treated as a constant relative to the  

ζζζζ�integration and the result would then depend only on 
the temporal correlation of the turbulence at any given 
point in the shear layer. This is probably the true in the 
cross stream direction, but j "σ µτ  is expected to decay 
much more slowly in the stream-wise direction-
especially at the higher Mach numbers of technological 
interest. However, Lighthill15 pointed out that the  
ς1-decay should be much more rapid in a reference 
frame moving with the convection velocity, Uc, of the 
turbulence and Ffowcs Williams16 showed that this idea 
can best be implemented by introducing the moving 
frame correlation 

 ( ) ( ); , ; ,M
j jσ µ σ µτ τ τ τ′ ′≡" "x xξ ζξ ζξ ζξ ζ  (69) 

where 

 �
ciU τ≡ −ξ ζξ ζξ ζξ ζ  (70) 

into Eq. (66) and changing the integration variable from 
ζζζζ to ξξξξ. 

 The result, which is much simpler when re-expressed 
in terms of the acoustic spectrum  

 ( ) ( )21
,

2
oi t

o oI e p t dt
∞

−∞

= ∫ ω
ω π

x x  (71) 

or better yet in terms of Iω (x x′) 

 ( ) ( )
V

I I dω ω ′ ′= ∫x x x x  (72) 

the acoustic spectrum at x due to a unit volume of 
turbulence at x′,is given by          

 

( )

( ) ( )
( )

* �2  ; ;

, ,

j c

V

i M
j

I

U

e d d

∞

−∞
−

′ =

′ ′Γ Γ + +

′

∫ ∫ x x"

"

ω

σ µ

ωτ
σ µ

π ω τ ω

τ τ τ

x x

x x i

x

ξξξξ

ξ ξξ ξξ ξξ ξ

 (73) 

where capital letters denote Fourier transforms (with 
respect to time) of the corresponding lower case letters, 
and the asterisk denotes complex conjugates.  

Whenθ and M are sufficiently large,  equation (64) and 
the form of BG µ  and IG µ  given in reference 4 imply 

that 

( )
( ) ( )

/

2
sin   cos 

2

� �                                        

i r c

j

Bj Ij

e

c r

+

+

Γ = −

 ′ ′Γ + Γ 

ω

σ

σ σ

ω θ ϕ
π

x x x x
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  (74) 

where 

( ) ( )
1 cos  

� �
i x
c

Bj Bj j Be D G+
−

⊥′ ′Γ ≡ Γ = !!
ω θ

σ σ σµ µx x x x  

  (75) 

( ) ( ) ( ), ,
� �

i
X

Ij Ij j Ie D G
∞ ′Θ

⊥ ⊥
′ ′Γ ≡ Γ = !! θ ϕ

ε
σ σ σµ µx x x x  

 
0

2 20( ) 1 sin sin cos

X

Z dZ
c

α

∞
+′

ωα
Θ ≡ κ − − θ ϕ θ∫      (76)                  

0α is determined implicitly by 

 0( , sin sin , ) cos
c c+ +

ω ω
κ ω θ ϕ α = θ  (77) 

( )
1

1

2j j
j j

U
D

x x x

−∂ ∂ ∂
≡ − + +

′ ′ ′∂ ∂ ∂
!

σµ σµ σ µσ σ
µ

γ
δ δ δ δ  

  (78) 

and { }2 3,x x⊥′ ′ ′=x  is the cross flow source variable. 

Since Θ∞ varies on the slow streamwise length scale X′, 
which is much longer than the correlation length of the 
turbulence, we can account for its variation over the 
range of integration in Eq. (73) by expanding it in a 
Taylor series to show that 

 
( )( ) ( )

( )( )
1

1

� �, ,

                                         

c

c

X U X

X U

∞ ∞′ ′Θ + + + Θ

′− +

x xε ξ τ

εκ ξ τ
 (79) 

with more than enough accuracy to evaluate this result. 
Using this in Eq. (76) and inserting the result along 
with Eqs. (74) and (75) into Eq. (73) shows that 

( )

( ) ( )

( ) ( )( )
( ) ( )( )

2

* *

* * *

sin cos

2

� � 

� ; , 1 cos

� ; , ,

Bj Ij

V

B j c

I j c

I
c r

+ H M

+ H U X d

+

 
′ =  

 

 ′ ′Γ + Γ 

 ′ ′Γ −
′ ′ ′+Γ − 

∫

" "

" "

ω

σ σ

µ σ µ

µ σ µ

ω θ ϕ
π

ω θ

ω κ ω ξ

x x

x x x x

x x x

x x x

ξ ξξ ξξ ξξ ξ

ξ ξξ ξξ ξξ ξ

 

  (80) 

where 

 ( ) ( )* 1
; ,

2
i M

j jH e ; dωτ
σ µ σ µω τ τ τ

π

∞

−∞

′ ′≡ ∫" "x x ,ξ ξξ ξξ ξξ ξ  (81) 

denotes the 2-point fourth order turbulence spectrum 
relative to the moving frame and the second terms in 
the square brackets are identically zero when ω is 
greater than the neutral frequency where 

( )Im 0ox′ =κ ω . 

This result is nearly exact. The only significant 
approximation is that the mean flow spread rate, ε, is 
small. But Hσjµe is expected to vary much more rapidly 
with ξξξξ than Γeµ and Eq. (80) can therefore be 
approximated by 

 

( )

( ) ( )
( ) ( )( )
( ) ( )( )

2

* *

* * *

cos sin

2

� �

� ; 1 cos

� ; ,

Bj Ij

B j c

I j c

I
c r

M

U X

+

 
′ =  

 
 ′ ′Γ + Γ 
 ′ ′Γ Φ −

′ ′ ′+Γ Φ − 

" "

" "

ω

σ σ

µ σ µ

µ σ µ

ω ϕ θ
π

ω θ

ω κ ω

x x

x x x x

x x x

x x x

 

  (82) 

where 

 ( ) ( )j j

V

; H ; , dσ µ σ µω ω′ ′Φ ≡ ∫" "x x ξ ξξ ξξ ξξ ξ  (83) 

is the single point fourth order turbulence spectral 
tensor at x′. 

This approximation cannot remain valid when  
Mc cosθ = 1 because the first spectral function in  
Eq. (82) does not → 0 as ω → ∞ in this case, which 
causes the integral of Eq. (82) with respect to ω (and 
therefore the mean square pressure) to become infinite. 
Ffowcs Williams16 argued that this type of difficulty 
could be overcome by replacing the Doppler factor  
(1 � Mc cosθ ) with 

 ( ) ( )2 2
1 cos 1 cosc c cM M aM− → − +θ θ  (84) 

where a is a small constant. While this result is not 
strictly valid in the present context, it may be useful for 
obtaining numerical results.  

Notice that Eq. (82) can now be evaluated without 
performing any quadritures once the appropriate 
solutions to the Rayleigh equation (49) have been 
found. But this equation is still fairly complex and a 
great deal of modeling and/or computation is required 
to evaluate all of its terms. It is therefore worthwhile to 
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introduce some approximate results that can be used to 
get some insight into the import physical effects. 

Some Approximate Results 

It is well known20 that the Reynolds stresses (0)
11T  and 

(1)
12T  that appear in the lowest order mean flow 

equations can be chosen so that these equations possess 
similarity solutions of the form 

 ( ) ( ),   U U R R= =η η  (85) 

where 

 2x x≡η  (86) 

and since this causes no particular inconsistency with 
the expansions (33) through (37) and agrees well with 
experimental observation we shall now assume this to 
be the case. 

We also suppose that the observation point lies in the 
plane perpendicular to that of the shear layer, i.e. that 
the azimuthal angle ϕ  = 0. Then we can evaluate all of 

the factors in Eq. (82) by solving the one-dimensional 
Rayleigh equation, i.e. by setting k3 = 0 (or equivalently 
k = k1) in Eq. (47) which now becomes 

 
( ) ( )1

2 2 2
2

2 2
1

1 1

~ ~
o o

k
c cd d

L
d dU U

 
 → + −
 − − 

σ
ω

η ησ σ
  (87) 

where 

 Xω ω≡  (88) 

and 

 1kσ ω≡  (89) 

is the reciprocal of the complex phase speed. The 
eigenvalue κ  in Eq. (76) can now be replaced by 

 ( )o ≡
κ

σ ω
ω

 (90) 

i.e. it is a function of the single variable ω  which 
means that oα  is now determined by 

 ( ) 1
coso c+

Ω =σ θ  (91) 

where oωαΩ ≡  is essentially the complex frequency 
eigenvalue of the Rayleigh problem corresponding to 
the specified real phase speed c+/cosθ. 

Additional simplification can be achieved by assuming 
that 

 ( ) ( )j j oσ µ σ µω δ δ ωΦ Φ" "%  (92) 

which implies, among other things, that 0oh′ % .For 

simplicity we also neglect the cross coupling between 

the two components of the Greens function and set 2~
oc  

= 2c+ = constant. It then follows from Eqs. (45), (47), 

(65) , (74) through (77) and (82) that 

( ) ( )

( )( ) ( ) ( )
( )

( ) ( )( )( )

2

23

3

2

2( ) Im ,

1
, , cos

1

12
, cos

,
1 cos

2
  1

o
o o

o c o
o

w
X c

I
c r

c

w A X
M

e Re U∞

−
+

+

+

−

− Θ

  
′   ′ +   ′  = 

     ∆    

′ ′Ω
Φ − +

′∆

Φ − ′ 

ω

θ ωε

η ω θ
ω γ

π ω θ

η ω
ω θ

ω

π ω σ ω
εσ

x x

 

  (93) 

where 

 
( )2

1

oW

Uσ
∆ ≡

−
 (94) 

 lim  
oσ σ σ→

∂∆′∆ ≡
∂

 (95) 

 o
o

d

d

σ
σ ′ ≡

Ω
 (96) 

and Wo denotes the Jacobian with derivatives with 
respect to η. 

Numerical Results 

To compute the radiated sound field from Eq. (93) it is 
necessary to specify the turbulence spectra Φo. Recent 
numerical studies18,20 suggest that it should be of the 
Gaussian form 

 
( ) ( )2

22
23

2
  s

s s s
o s

s

u a
e

ω ωπ ρ

ω
−Φ = "  (97) 

where s sXω ω′= , /s s X ′=" " , ρs, and Us are 

constants with obvious physical interpretation and as is 
an empirically determined scale factor. It is also 
necessary to specify the mean velocity profile U (η) in 
the shear layer which is reasonably well represented 
by20 

 ( )1
1 tanh

2
U = − η  (98) 
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The result is, as it should be, independent of the axial 
source location X ′  within the shear layer when 
expressed in terms of the scaled frequency Xω ω′≡ . 

When Im Θ∞  =O(1), the 1/ε factor in the exponent of 
Eq. (93) will cause the second term to be negligibly 
small when Im Θ∞ > 0 and very large (i.e. it will be 
dominant) when Im Θ∞ < 0.The ε in the denominator 
will cause his term to be large when Im Θ∞  =O( ε )no 
matter what its sign . 

Figure 3 is a plot of Im Θ∞ as a function of  θ for 
various values of the Mach number M and source 
frequency ω . The curves are truncated at small θ 
because the second term has no radiation field beyond 
this point, i.e. it becomes evanescent there. These 
results show that  Im Θ∞  is always positive at θ = 90° 
but can change sign and become negative when M is 
sufficiently large and θ  is sufficiently small.  

The spectral shape at 90& is therefore produced by the 
first term in Eq. (93) which is primarily determined by 
the factor  

( )( )
6

1 coso cM
c

ω ω θ
∞

 
Φ − 

 
( )

6

oc∞

 
= Φ 

 

ω ω  

at that angle. Refraction effects, which are accounted 
for by the first factor in this term, will cut off the high 
part of the source spectrum at small angles to the axis. 
But figure 3 shows that the second term can become 
dominant at these angles when M is sufficiently large. 
Its spectral shape, which is primarily determined by 

( )( ) ( )( )
6

 , Im ,o cRe U X H X
c∞

 
′ ′Φ − − 

 

ω ω κ ω κ ω  

where H(x) denotes the Heaviside function H(x) = 1,0  

x ≷ 0, is relatively independent of angle and has a much 

narrower width than Φo(ω) due to the relatively narrow 
band of unstable frequencies at X ′ .  

Concluding Remarks 

The Navier-Stokes equations, rewritten in the form of 
the LNS equations with externally applied stress and 
energy flux sources were solved for a two-dimensional 
shear layer by using a vector Greens function approach 
and assuming that the spread rate ε of the shear layer is 
small. The relevant Greens function has two 
components -one of which corresponds to the usual 
Lilley equation solutions that appear in the literature 
and the other associated with linear instability waves.  

Numerical results obtained for a simplified source 
model show encouraging qualitative agreement with 
experimental observations. Observed differences in 
spectral shapes at small and large angles to the 
downstream axis that occur at the higher Mach numbers 
can, in part, be attributed to the fact that the first Greens 
function component is dominant at θ = 90° while the 
second component is dominant at small θ . 
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Figure 3.—ImΘ∞(θ,ω) vs θ. (a) ω = 0.2. (b) ω = 0.1. (c) ω = 0.3.
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